Journal of Organometallic Chemistry, 387 (1990) C13-C16 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20780PC

Preliminary communication

Modifizierte Darstellung und Röntgenstrukturanalyse von Cyanotrihydroboranato-tris(η^5 -cyclopentadienyl)acetonitril-uran(IV)

Martin Adam, Kenan Yünlü * und R. Dieter Fischer **

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (F.R.G.)

(Eingegangen den 26. Januar 1990)

Abstract

A brilliant green product that crystallizes from concentrated solutions of the salt $[(n-Bu)_4N][Cp_3U(NCBH_3)_2]$ in acetonitrile solution has been found to be the trigonal bipyramidal complex $Cp_3U(NCBH_3)(NCCH_3)$ (2). A crystallographic single crystal X-ray diffraction study shows the crystals to be monoclinic, space group $P2_1$ with a 779.6(3), b 1464.9(4), c 784.9(3) pm; $\beta = 97.24(2)^\circ$, Z = 2; R = 0.056 ($R_w = 0.063$); U-N: 254.2(11) and 269(12) pm. Compound 2 is the second example of a transition metal complex with exclusively terminal NCBH₃ ligands, and a practically linear MNCB alignment.

1978 wurde durch eine erste erfolgreiche Röntgenstrukturanalyse [1] des Uran(IV)-Organyls Cp₃U(NCS)(NCCH₃) (1; Cp = η^5 -C₅H₅) der Beweis für die Existenz der zuvor auf Grund spektroskopischer Daten postulierten [2] Familie von trigonal bipyramidal (tbp) konfigurierten Tricyclopentadienyluran(IV)-Komplexen erbracht. Obwohl bald nach der ersten Darstellung der polymeren Verbindung (Cp₃U(μ -NCBH₃))_n [3] auch das zu 1 homologe Acetonitriladdukt Cp₃U(NCBH₃) (NCCH₃) (2) beschrieben wurde (Gl. 1), erwies sich das Züchten geeigneter Einkristalle von 2 bis vor kurzem als besonders schwierig. Erst die

$$Cp_{3}UCI \xrightarrow{KX/NCCH_{3}} Cp_{3}UX \cdot NCCH_{3} \downarrow$$
(1)
(X = NCS, NCBH₃ etc. [4,5])

Erschliessung verschiedener Salze $(R_4N)(Cp_3UXY)$ mit X, Y = NCS und/oder NCBH₃ [6] sowie die Beobachtung, dass 1 in Form von wohlausgebildeten Einkris-

.....

^{*} Feste Adresse: Rhône Poulenc Inc., CN 5266 Princeton, NJ 08453-5266, U.S.A.

^{**} Korrespondenzadresse

Fig. 1. Elementarzelle (ORTEP-Plot) von $Cp_3U(NCBH_3)(NCCH_3)$ (2) mit Atomnumerierung. Nur die B-Atome aller sechs wiedergegebenen Moleküle sind gekennzeichnet.

tallen aus Acetonitrillösungen von $(n-Bu_4N)(Cp_3U(NCS)(NCBH_3))$ kristallisiert [7], führte nunmehr auf analogem Wege auch zu Einkristallen von 2:

$$(n-Bu_4N)(Cp_3U(NCBH_3)_2) \xrightarrow[-(n-Bu_4N)(NCBH_3)]{} Cp_3U(NCBH_3)(NCCH_3) \downarrow (2)$$

Im Gitter von 2 liegen erwartungsgemäss tbp-konfigurierte Moleküle vor (Fig. 1), deren Atomanordnung (ohne H-Atome) z.B. derjenigen in 1 [7] bzw. in den gleichfalls ungeladenen Lanthanoid(III)-Komplexen $Cp_3Ln(NCCH_3)_2$ (Ln = La, Ce und Pr [8]) entspricht. Während die Cent(Cp)-U-Cent(Cp)'-Winkel wie in praktisch allen tbp-Systemen nahe bei 120°C liegen, der N-U-N-Winkel mit 177.8(4)° fast den Idealwert von 180° erreicht, und die Cent-U-Abstände im Mittel denen in 1 sowie in verschiedenen Salzen des (Cp₃U(NCCH₃)⁺₂-Kations [7] gleichen (Tab. 1), unterscheiden sich beide U-N-Abstände in 2 von den entsprechenden Abständen in 1 auffällig: So übertrifft der U-N-Abstand zum NCBH₃-Liganden mit 254.2(11) pm deutlich den zum NCS-Liganden (244(1) pm [7]. Trotz des somit wohl überraschend schwachen σ-Donorvermögens des Cyanoboranat-N-Atoms erfolgt auch keine entsprechende Verkürzung der U-N(Nitril)-Distanz gegenüber dem Abstand in 1 (266 pm [7]) $um \le 10$ pm (zum Vergleich: U-N im $(Cp_3U(NCCH_3)_2)^+$ -Kation: 257.5 pm [7]), sondern eine geringfügige Abstandszunahme (2: 269.9 pm). Dieser U-N-Abstand gehört zu den längsten an Uran(IV)-Organylen bislang beobachteten; vergleichbar hohe Werte sind z.B. für $CH_2(C_5H_4)_2U^{IV}Cl_2(bpy)$ (268 pm; bpy = 2,2'-Bipyridin [9]) und $U^{IV}(H_3BCH_3)_4$ Me₂N(CH₂)₂NMe₂ (272-274 pm [10]) bekannt. Insgesamt variiert somit der U-N-

Abstand von Cp_3U^{IV} -Derivaten zwischen 206 [11] und nahezu 270 pm. Der NCCH₃-Ligand von 2 lässt sich im Gegensatz zu dem von 1 am Hochvakuum leicht entfernen bzw. quantitativ auch durch ein Acrylnitrilmolekül austauschen [5].

Die Packung der Moleküle von 2 in der Elementarzelle (Fig. 1) schliesst intermolekulare B-H---U-Wechselwirkungen aus. Das wohl nicht vernachlässigbare elektrische Dipolmoment von 2 bedingt vermutlich das gegenüber den quasi-isomorphen $Cp_3Ln(NCCH_3)_2$ -Systemen (Raumgruppe: *Pnca* [8]) etwas modifizierte Packungsmuster sowie die unterschiedlichen Ring-Metall Abstände U-Z1/3 und U-Z2 in 2.

Von den insgesamt vier bis heute röntgenstrukturanalytisch untersuchten Metallkomplexen mit N-koordinierten Cyanoboranatliganden enthalten zwei [12] metallverbrückende Liganden, wie sie auch für nitrilfreie Polymere $(Cp_3U(NCBH_3))_n$ angenommen werden [6]. Während der einkernige Komplex $Cu^{II}(NCBH_3)_2(Me_2N-(CH_2)_2NMe(CH_2)_2NMe_2)$ zwei terminale NCBH₃-Liganden enthält, von denen einer allerdings merklich abgewinkelt ist (Winkel Cu-N-C: 165.0 bzw. 175.6° [13]), lässt sich der quasi-tbp-konfiguierte Komplex $Co^{II}H(NCBH_3)(PPh_3)_3$ (3) [14] mit 2 am besten vergleichen. Anders als in 3 (ν (CN) 2190 cm⁻¹) bleibt die ν (CN)-Frequenz von 2 mit 2178 cm⁻¹ [6] gegenüber der des Salzes K(NCBH₃) praktisch unverändert. Der C-B-Abstand in 2 ist mit 166.8(17) pm zugleich ungewöhnlich lang (3: 159.9 pm [14]) und ähnelt bereits dem C(Phenyl)-B-Einfachbindungsabstand des B(C₆H₅)₄-Anions (169–171 pm [7]). In dem erst jüngst beschriebenen Komplex (Pt¹(CNBH₃)(dppm))₂ mit terminalen, jedoch C-koordinierten CNBH₃-Liganden erweist sich der entsprechende N-B-Abstand als vergleichsweise kurz (154.3 pm; ν (CN): 2195 cm⁻¹ [15]).

Experimentelles

Sämtliche Arbeitsgänge wurden unter absoluter N₂-Atmosphäre durchgeführt. Optimal dimensionierte, leuchtend grüne Einkristalle der Titelverbindung 2 bildeten sich innerhalb von zwei Wochen aus einer gesättigten Lösung von [(n- C_4H_9)₄N][(C_5H_5)₃U(NCBH₃)₂] (dargestellt nach Ref. 6) in Acetonitril (Temp. ca. 8°C). Das Produkt 2 erwies sich auch spektroskopisch (IR, NIR/VIS) mit dem

Tabelle 1

U-C(Ring1)	278.2 ª	U-Z1	250.6 *	
(270.7(11) - 286.2(14))		U-Z2	239.9 ^b	
U-C(Ring2) (264.1(18)-272.2(1	268.4 ^{<i>a</i>} (4))	U-Z3	252.7 ^b	
U-C(Ring3)	279.8 "	N1-U-N2	177.8(4)	
(273.2(11) - 286.2(18))		U-N1-C1	177.6(10)	
U-N1	254.2(11)	U-N2-C2	172.3(9)	
U-N2	269.9(12)	N1-C1-B	172.3(11)	
N1-C1	113.3(16)	N2-C2-C3	172.9(14)	
N2-C2	114.9(17)	Z1-U-Z2	120.2	
С1-В	166.8(17)	Z1-U-Z3	116.1	
C2–C3	135.9(16)	Z2-U-Z3	123.7	

Wichtige Abstände (in pm) und Bindungswinkel (in Grad) samt Standardabweichungen des Moleküls Cp₃U(NCBH₃)(NCCH₃) (2)

^a $\overline{U-C}$ 275.5 pm (274 pm in 1 [7]); ^b Z ≜ Cp-Ringzentrum; $\overline{U-Z}$: 247 pm (247 pm in 1 [7]).

bereits auf anderem Wege erhaltenen $(C_5H_5)_3U(NCBH_3)(NCCH_3)$ [4-6] als identisch.

Strukturdaten von 2 [16]. SYNTEX P2₁-Vierkreisdiffraktometer, Graphitmonochromator (Mo- K_{α} -Strahlung, λ 0.709261 Å). Temp. 295 K, Kristalldimensionen: $0.20 \times 0.20 \times 0.30$ mm, $M_r = 514.25$. Monoklin, P2₁; a 779.6(3), b 1464.9(4), c 784.9(3) pm; β 97.24(2)°; U 889 × 10⁶ pm³, Z = 2, D_x 1.92 g cm⁻³; $2\theta_{max}$ 52°, μ 87.16 cm⁻¹, F(000) 479.96. Symmetrieunabhängige Reflexe: 1644, davon 1355 mit $F_0 \ge 4\sigma(F_0)$ zur Lösung der Struktur verwendet. Dreidimensionale Pattersonsynthese, Fourier- und "least-squares"-Verfeinerung (SHELX 76 bzw. SHELX 84), anisotrope Temperaturfaktoren (H-Atome in berechneten Positionen), numerische Absorptionskorrektur. Endgültige R-Werte: R = 0.056 bzw. $R_w = 0.063$ mit $w = 1.5861/(\sigma^2(F_0) + 0.0005F_0^2)$.

Dank. Die Autoren danken Frau Prof. G. Bombieri (Mailand/Padua) für wertvolle Ratschläge in einem frühen Stadium der Untersuchung sowie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Literatur

- 1 R.D. Fischer, E. Klähne und J. Kopf, Z. Naturforsch. B, 33 (1978) 1393; hinsichtlich einer neuerlich durchgeführten Röntgenstrukturanalyse von 2 vgl. Ref. 7.
- 2 R.D. Fischer und G.R. Sienel, Z. Anorg. Allg. Chem., 419 (1976) 126.
- 3 T.J. Marks und J.R. Kolb, J. Am. Chem. Soc., 97 (1975) 27.
- 4 K.W. Bagnall, M.J. Plews, R.D. Fischer, E. Klähne, G.W. Landgraf und G.R. Sienel, J. Chem. Soc., Dalton Trans., (1982) 1999.
- 5 E. Klähne, Dissertation, Universität Hamburg, 1982, S. 83-90. Bezüglich der Schwingungsspektren von 2 vgl. auch Ref. 6 (Tab. II).
- 6 R.D. Fischer und K. Yünlü, Z. Naturforsch. B, 38 (1983) 1369.
- 7 H. Aslan, K. Yünlü, R.D. Fischer, G. Bombieri und F. Benetollo, J. Organomet. Chem., 354 (1988) 63.
- 8 X.-F. Li, S. Eggers, J. Kopf, W. Jahn, R.D. Fischer, C. Apostolidis, B. Kanellakopulos, F. Benetollo, A. Polo und G. Bombieri, Inorg. Chim. Acta, 100 (1985) 183.
- 9 T.J. Marks, J. Organomet. Chem., 138 (1978) 157.
- 10 R. Shinomoto, A. Zalkin, N.M. Edelstein und D. Zhang, Inorg. Chem., 26 (1987) 2868.
- 11 R.E. Cramer, K. Panchanatheswaran und J.W. Gilje, J. Am. Chem. Soc., 106 (1984) 1853; R.E. Cramer, F. Edelmann, A.L. Mori, S. Roth, J.W. Gilje, K. Tatsumi und Nakamura, Organometallics, 7 (1988) 841.
- 12 (a) K.M. Melmed, T.-I. Li, J.J. Mayerle und S.J. Lippard, J. Am. Chem. Soc., 96 (1974) 69; (b) G.B. Segal und S.J. Lippard, Inorg. Chem., 16 (1977) 1623.
- 13 B.G. Segal und S.J. Lippard, Inorg. Chem., 13 (1974) 822.
- 14 R.J. Barton, D.G. Holah, H. Shengzhi, A.N. Hughes, S.I. Khan und B.E. Robertson, Inorg. Chem., 23 (1984) 2391.
- 15 M.N.I. Khan, C. King, J.-C. Wang, S. Wang und J.P. Fackler, Jr., Inorg. Chem., 28 (1989) 4656.
- 16 Weitere Einzelheiten zur Kristallstrukturuntersuchung können vom Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2 unter Angabe der Hinterlegungsnummer 54218, der Autoren und des Zeitschriftenzitats angefordert werden.